
Polymer Bulletin 1, 7-10 (1978) 

Polymer Bulletin 
�9 1978 by Springer-Verlag 

T w o  C o m p o n e n t  H y d r o g e l s  
1. Polymer- Polymer and Polymer- Solvent Interactions 
in a One Component Hydrogel - Theoretical Considerations - 
W. R. Good and H.-J. Cantow 

Institut f0r makromolekulare Chemie der Universit~t, 7800 Freiburg i. Br., 
Federal Republic of Germany 

Summary 

This and the subsequent papers concern with two component hydrogels, 

consisting of a polymer backbone built up by one polymer component, 

which is crosslinked by bridges of another polymer with varying 

length. In order to understand the effects of the crosslinker chain 
length on the networks as a whole the thermodynamic interaction pa- 

rameters for the system, with special reference to the swelling be- 

haviour, have to be determined first. By adapting and extending Sa- 

kurada' s method the equations of state for the ternary system water- 
linear crosslinker- one component gel are developped first. 

Introduction 

The work to be reported in this and subsequent papers was initiated 

to study the structural and physical properties of hydrophilic net- 

works which are composed of two chemically different chains, both 
of which, in their linear forms, are water soluble. This new class 

of hydrogels is expected to exhibit unique physical properties which, 
hopefully, can be interpreted in terms of their structural charac- 

teristics and the interactions which exist between the two diffe- 

rent polymeric components and the enclosed solvent, water. In this 
paper we will report the results of considerations aimed at eluci- 

dating the solvent- polymer and polymer- polymer interactions which 

should prevail in a binary network of the two polymer components. 

At this point we wish to unambigously define a one component gel and 

a two component gel. The one component gel is a network in which the 
crosslink itself is sufficiently short as to neglect it as being a 

component of the gel. In effect, in a one component gel the cross- 

link is considered to be volumeless and of tetrafunctional nature.By 
contrast, a two component gel is one in which the crosslink is suf- 

ficiently long such that it plays an important role in affecting the 
physical properties of the system. In this case the actual crosslink 
points are trifunctional in nature. 

The binary networks to be reported in the subsequent paper of this 
series consist of polyvinylpyrrolidone and polyethyleneoxide (PVP 
and PEO). From the standpoint of visualization, the PEO component 
serves as a long chain bridge or crosslink between the main chains 
of PVP. However, as the PEO component becomes longer and exists in 
higher concentrations the differentiation between main chain and 
crosslink becomes clouded since the crosslink length approaches the 
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distance between branch points of the main chain. Hence, the network 

is best described as a cross-linked graft copolymer. In order to un- 
derstand definitely the effects of crosslinker chain length on the 
networks as a whole it is necessary to first determine the thermody- 
namic interaction parameters for the system. Since we are paticular- 
ly interested in the effects with respect to swelling characteristics 
in water, it was also necessary to determine individual interaction 
parameters between the solvents and the two polymeric components. 
This is accomplished by adapting and extending a method first repor- 
ted by Sakurada et al ~. 

Theor~ 

Ternary phase relationships between one solvent and two linear poly- 
mers have been reported by several authors 2,3. In addition, Krig- 
baum et al 4,5 have reported phase relationships for crosslinked po- 
lymers together with mixed solvents. Sakurada et ali have derived 
phase relationships for the system involving a crosslinked polymer, 
a linear polymer and one solvent. It is this general system we are 
concerned with in the present work and, using Flory- Huggins 2 for- 
mulation for thermodynamics of polymer solutions, we will develop 
the equations of state for this ternary system. 

Consider the system: water (i), crosslinker component (linear) (2), 
and backbone polymer (erosslinked) (3). The total change in free 
energy upon bringing the crosslinked polymer into contact with a so- 
lution of the linear polymer may be expressed as 

AF = AF + AF , (I) 
m e 

where AF is the free energy change on mixing and AF represents the 
e 

elastic ~ree energy of the network. For the present we will only be 
concerned with the free energy of mixing and will present the elastic 
component only in a formal way. Development of the elastic contribu- 
tion will be done separately when we become concerned with its con- 
tribution on the total free energy change of the system. The free 
energy of mixing may be separated into its enthalpic and entropic 

components, AH = kT 
m i<j ni~jXij 

3 (2) 
AS ~= -k ~ niln~i m 

i=l 
where $i represents the volume fraction of the component i at equili- 
brium and Xi. are the Flory- Huggins interaction parameters we seek. 
Since we have, 

Xj i = xijVji , (3) 

where V.. = Vj/V i and represents the ratio of molar volumes of the 
jth and3~th components, our problem reduces to one of finding 
the three interaction parameters, XI2, XI3 and X23. The total free 
energy change is then written, 

3 
AF = kT ~i~jXij + Eniln~i ] + AF e (4) 

The conditions for equilibrium in this three- component system are: 

~Ig = ~is ~2g = ~2s (5) 



where chemical potentials are subscripted g for the gel phase and s 
for the external solution phase. 

Differentiation of equation (4) with respect to the appropriate n. 
gives, 1 

i n  a l g  = i n  ~1 + (1-~1) - ~12~2 - V13~3 + (X12~2 + X13~3) (6) 
6 

(~2 + ~3) - X23V12*2~3 + N ~-~1 (AF el 

in a2g = in #2 + (1-~2) - ~IV21 - ~3~23 + (X21~I + X23~3) (7) 

(~1 + ~3 ) - X13V21~l~3 + N ~-~2 (AF e ) 

where we have converted chemical potentials to activities. According 
to Flory 2, the free energy of elasticity is given by: 

KTu 
F = e [3~s 2 3] (8) e 2 -3 - in a s , 

where u is the number of elastically effective chains and ~ is the 
linear ~eformation factor. Without making any assumptions as s to the 
validity of the bracketed expression in equation (8) we may write, 

(~F e)_ 6~ 6(AF ) 
O 

= N N e ( 
Pig -p ig) e ~ ~n. ~n. 

(9) 
S l l 

and since, by definition, 

3 
s = i/ ~3 = (V o + nlVi/N + n2~2/N)/V o , (iO) 

the linear deformation factor may be expressed as a linear combina- 
tion of factors in n I and n 2. Therefore, 

~a ~a 

s = ~i/3as2Vo N s = ~2/3e2VoN , (ii) 
~n I ~n 2 

where N is Avogadro's number and V is the volume of the unswollen 
network. Substituting into equatio~ (9) we have, 

(AF) V 1 ~(AF ) 
e e (12) 

N ~n 1 3~ 2V ~c~ 
s o s 

~(AF ) V2 6(AF ) 
e e 

N ~ (13) 

6n2 3c~ 2V ~ 
S O S 

Hence, we have expressed the change in elastic free energy for equa- 
tions (6) and (7) in terms of a single common variable, the linear 
deformation factor. If we now rearrange equations (6) and (7) accor- 
ding to Sakurada et ali and substitute (12) and (13) for the diffe- 
rentials, the activity relations for the ternary phase read, 

2 2 
in alg = in ~I + (I-V12)~2 + (I-V13)~3 + X12~2 + X13~3 



10 

+ (X12 + X13 - v12x23)4#2qb3 + [ - - ( A F e )  ] (14) 3~ 2V 6~ 
s o s 

i n  azg = i n  ~2 + ( i -~21)#1 + (1-~23)#3 + X21~l 2 + X23~32 

+ (X21 + X23 - g21X13)* l *3  + 3~ 2V [--~(AFe )] (15) 
s o  s 

From equat ions (14) and (15) i t  can be seen t h a t  any dependence o f  
or a^ on the nature o f  the e l a s t i c  f ree  energy change w i th  
l i n e ~  deformat ion f a c t o r  can be e l im ina ted  by so l v i ng  these 

two equat ions s imu l taneous ly .  

In the external solution phase in which the linear polymer is dis- 
solved in the solvent we write the classical Flory- Huggins acti- 
vity equations _ 2 

in als = in v I + (l-Vl2)V 2 + X12V2 
(16) 

2 
In a2s = in v 2 + (l-v21)v I + X21Vl 

where v. is used to distinguish solution phase volume fraction from 
gel pha~e volume fraction, ~. Using equation (3) and combining 
equations (14), (15) and (16~ according to the equilibrium conditi- 
ons from equations (5) we obtain the relationship, 

1 (vt-~ I 
) 

~ in(vl/~l) -V121n(v2/~2) = 2X12 ~3 + (X13-X12-vI2X23) (17) 

If the left side of equation (17) be plotted vs. 2(Vl-~.)/~. a 
straight line results~ the slope of which is X12 and th& intercept 
of which is (XI.-X.~-v.^x2.). Obviously, the ifnear relationship 
will only hold -j lz tz 5 if X12 is concentration- independent. 
It is interesting to note that even though Sakurada et al used 
an incorrect form for the elastic contribution to the total free 
energy, their equation (6) is correct. In addition, most authors 
discard V._ and V2_ from equation (14) as being negligible. If, 

3 
however, ~ey are carried through the derivation, upon combining 
equations (14), (15) and (16) these terms combine to be eliminated 
in any case. In short, equation (17) is totally independent of ex- 
plicit contributions from the crosslink density. In a subsequent 
paper these expectations will be tested experimentally. 
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